پیش‌پردازش پارامترهای ورودی به شبکه‌ی عصبی مصنوعی و سیستم استنتاج تطبیقی عصبی- فازی با استفاده از رگرسیون گام به گام و گاماتست به‌منظور تخمین تبخیر

نویسندگان

چکیده مقاله:

فرایند تبخیر به­علت نیاز به فاکتورهای اقلیمی مختلف و اثر متقابل این فاکتورها بر یکدیگر،یک پدیده­یغیرخطی و پیچیده است. یکی از مراحل پیچیده در مدل­سازی غیرخطی، پیش­پردازش پارامترهای ورودی برای انتخاب ترکیبی مناسب از آن­ها است. پیش­پردازش داده­ها سبب کاهش مراحل سعی و خطا و شناخت مهم­ترین پارامترهای مؤثر بر پدیده­ی مورد نظر به­منظور مدل­سازی با استفاده از روش­های هوشمند می­شود. در این پژوهش از دو روش رگرسیون گام به گام (FS) و گاماتست (GT) برای پیش­پردازش پارامترهای ورودی به شبکه­ی عصبی پرسپترون چندلایه و سیستم استنتاج تطبیقی عصبی- فازی برای تخمین تبخیر روزانه­ی ایستگاه هواشناسی شهرکرد استفاده شده است. برای ارزیابی تأثیرپیش­پردازش پارامترهای ورودی با استفاده از معیارهای مختلف آماری سنجش خطا به مقایسه­ی چهار مدل ANN-FS، ANN-GT، ANFIS-FS و ANFIS-GT (با پارامترهای پیش­پردازش شده) با یکدیگر و هم­چنین با مدل­های ANN و ANFISکه هیچ­گونه پیش­پردازشی روی پارامترهای ورودی آن­ها انجام نشده است، پرداخته شد. نتایج نشان داد که هر شش مدل از دقت بالایی برای تخمین تبخیر روزانه برخوردار هستند و از میان شش مدل مزبور، مدل ANFIS-FS با مقدار ضریب تبیین (R2) 91/0 و جذر میانگین مربعات خطای (RMSE) 11/0 چه در مرحله­ی آموزش و چه در مرحله­ی آزمون، نسبت به مدل­های دیگر از دقت بالاتری برخوردار است. اگرچه در این پژوهش برتری مدل­های پیش­پردازش ناچیز است اما توانایی مشخص نمودن ترتیب اهمیت پارامترهای ورودی، تعیین تعداد تقریباً 3720 داده­ی معنی­دار برای آموزش شبکه و یافتن بهترین ترکیب، آزمون گاماتست را می­تواند به­عنوان ابزاری مفید برای پیش­پردازش پارامترهای ورودی برای مدل­سازی سریع­تر تبخیر تبدیل کند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

تخمین هوشمند حداکثر عمق آب‌شستگی اطراف آب‌شکن‌های L شکل با استفاده از شبکه‌های عصبی مصنوعی و سیستم استنتاج فازی- عصبی

از جمله مسایل مهم در طراحی آب‌شکن‌ها، پدیده آب‌شستگی موضعی دماغه آنها می‌باشد که به‌علت تنگ‌شدگی مقطع جریان و وجود گردابه‌های قوی به‌وجود می‌آید و یکی از شاخص‌های مهم در تعیین مشخصات حفره‌ی آب‌شستگی، حداکثرعمق آب‌شستگی می‌باشد. امروزه شبکه‌های عصبی کاربردهای بسیاری در مسایل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کرده است. بنابراین در این پژوهش از...

متن کامل

تخمین ضریب اصطکاک در لوله‌ها با استفاده از سیستم تطبیقی استنتاج فازی- عصبی

تخمین ضریب اصطکاک در لوله‌ها در بسیاری از مسائل مهندسی آب و فاضلاب، مانند توزیع سرعت و تنش برشی، فرسایش، انتقال رسوب و افت هد، اهمیت ویژه‌ای دارد. در تحلیل این‌گونه مسائل با دانستن ضریب اصطکاک، می‌توان تخمین دقیق‌تری از آنها به‌دست آورد. در این تحقیق به‌منظور تخمین ضریب اصطکاک در لوله‌ها با استفاده از سیستم تطبیقی استنتاج فازی- عصبی، روش افراز شبکه‌ای مورد استفاده قرار گرفت. برای آموزش و تست مد...

متن کامل

تخمین انرژی شکست بتن با استفاده از روش های سیستم استنتاج تطبیقی فازی عصبی هادی

انرژی شکست بتن GF، یکی از پارامترهای اساسی شکست و مُعرّف مقاومت ترک‌خوردگی بتن است،همچنین یکی از ویژگی های مهم بتن در ملاحظات طراحی سازه های بتنی است. در سال های اخیر با بهره گیری از روش های مختلف آزمایشگاهی، پارامتر های شکست بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر ها در طراحی سازه ها از اهمیت ویژه ای برخوردار است. در این مقاله مدل شکست بر‌اساس سیستم تطبیقی فازی عصبی (ANFIS) برای تخمین پا...

متن کامل

کنترل پرواز تطبیقی غیرخطی با استفاده از گام به عقب و شبکه عصبی

در این نوشتار یک سیستم کنترل پرواز تطبیقی غیرخطی با استفاده از گام به عقب و شبکه‌ی عصبی پیشنهاد شده است. از کنترل کننده‌ی گام به عقب برای پایدارسازی هم‌زمان تمام متغیرهای حالت بدون فرض دو مقیاس زمانی که دینامیک سریع شامل نرخ‌های زاویه‌یی هواپیما را از دینامیک آهسته شامل زاویه‌ی حمله، زاویه‌ی سرش جانبی و زاویه‌ی بنک جدا می‌سازد، استفاده می‌شود. در این نوشتار فرض بر آن است که ضرایب آیرودینامیکی د...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 1

صفحات  63- 76

تاریخ انتشار 2012-11-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023